Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Mohamed Zayed

Washington University School of Medicine, USA

Title: Title: Vascular surgery tissue biobanking for the analysis of human peripheral arterial atherosclerotic occlusive disease

Biography

Biography: Mohamed Zayed

Abstract

Objectives: Over three million Americans have advanced peripheral arterial occlusive disease leading to significant patient morbidity and mortality. The lack of well-preserved human peripheral arterial tissue substrate has limited scientific exploration of this disease process and development of impactful targeted molecular therapies. To address this, we developed an integrative biobanking strategy to collect peripheral arterial tissue specimens from patients undergoing vascular surgery.

Methods: Over 22 months, we harvested vascular specimens from consenting patients undergoing open arterial endarterectomy and revascularization procedures. All patients were enrolled in an IRB approved protocol. A biobank infrastructure was developed to manage logistics, funding, collection, and real-time processing of harvested arterial tissue.

Results: 356 patients were enrolled in the vascular surgery biobank prior to the index operation. 42 clinical variables were evaluated for each patient during the perioperative period. Vascular specimens were successfully collected for 54% (193) of patients who enrolled in the biobank. The majority of specimens collected were retrieved from the peripheral arterial system (50% carotid artery, 15% anterior or posterior tibial arteries, and 12% femoral or popliteal arteries). Each arterial specimen was sub-divided into maximally and minimally diseased portions to facilitate intra- and inter-patient biochemical and molecular analyses.

Conclusions: An integrative biobanking approach in vascular surgery patients is feasible and provides a highly unique peripheral arterial substrate for molecular and biochemical analyses. Biobanking management and daily operations requires a dedicated team approach to insure proper patient consenting, specimen collection, and subsequent experimental analysis.